

ALSHARQA

GRILLES & REGISTERS

AIR OUTLETS
TECHNICAL CATALOGUE

المصرية الخليجية لأعمال التكيف - الشارقة egyptian gulf for the work of air conditioning

INDEX

TOPIC	PAGES
INTRODUCTION	2
CONSTRUCTIONAL DETAILS ENGINEERING DATA	3-5 6
SPREAD REQUIREMENTS	7
NOISE CRITERIA AVAILABLE SIZES &CFM RANGE	8 9
BASIC PERFORMANCE DATA	10-12
NOTES	13-14

INTRODUCTION

Grilles/Registers have broad range of applications fulfilling complete choice and engineering flexibility with robust construction and fine finish. With best architectural and engineering precision these are considered, to be the most frequently used devices in any heating, ventilating and cooling systems. This type of air outlet is best suited for high-wall applications, residential buildings, bed rooms and exposed duct applications.

They come with horizontal as well as vertical adjustable blades. They offer low pressure drop and low noise levels to the ambience. Standard finish is in white coated under electrostatic polyester powder coating system. Other colors also available on request. Highest quality polyester powder coating enhances its appearance.

CONSTRUCTIONAL DETAILS

Supply Air Grille (SAG)

MODEL: SAG - DD

Supply Air Register (SAR)

MODEL: SAR - DD

Return Air Grille (RAG/EAG)

MODEL: RAG HB-SD or EAG HB-SD

MODEL: RAG VB-SD or EAG VB-SD

CONSTRUCTIONAL DETAILS

Return Air Register (RAR/EAR)

MODEL: RAR HB-SD or EAR HB-SD

MODEL: RAR VB-SD or EAR VB-SD

ENGINEERING DATA

DEFINITIONS

:The forward moving force of an air stream within a duct -Velocity pressure (Pd) (Dynamic pressure) measured in mm (inch) W.G. of water.

-Static pressure (Ps) :The outward force within a duct measured in mm (inch)W.G.

of water.

-Total pressure (Pt) :The sum of the velocity and static pressure in mm (Inch) W.G.

of water.

-Outlet velocity (Vk) :Discharge or intake velocity of an outlet or inlet in m/s (fpm)

measured with an approved calibrated velometer at specified

locations relative to the face of the outlet or inlet.

-Terminal velocity :From an outlet, in m/s (fpm), is the highest sustained velocity

in the mixed air stream arbitrarily specified and used to

determine throw.

-Throw :Of an outlet, in m (feet), is the distance from the center of the

> outlet to a point in the mixed air stream where the highest sustained velocity of the mixed air stream has been reduced

to a specified level.

:The vertical distance, in m (feet), to the point in a horizontally -Drop

project air stream when the highest sustained velocity of the

mixed air stream has been reduced to a specified level. -Spread

:The maximum total width in m (feet) of the air pattern at

the point of terminal velocity.

-Aspect ratio :Ratio of the length / width of a rectangular air outlet or

inlet

-Area factor Ak :Of an outlet or inlet which is also a flow factor determined

from the discharge or intake² velocity (Vk) and the volume

flow rate.

Ak = O / Vk in m or ft.

DEFLECTION SETTINGS

The figures above show the air pattern of different blade settings. It is noted that the throw and drop will decrease as the angle of deflection increased.

SPREAD REQUIREMENTS

The vane angle adjustment of grilles will affect the spread as follows:

- 1) For 0° deflection angle , the total spread of the air stream is one-third of the throw.
- 2) For 22.5° deflection angle, the total spread of the air stream is about 45 percent of the throw
- 3) For 45° deflection angle, the total spread of the air stream is two-third of the throw.

The total drop of an air stream is the sum of drop due to throw and drop due to temperature difference of air in the room and air at the grille.

Drop.(D)=D throw + D dt

NOISE CRITERIA

APPLICATION	Recommended Delivery Velocities (m/s)
Broadcasting studios, sound and recording studios.	1.5-2.5
Concert halls, auditoriums, library, classrooms	2.5-3.5
Apartments, residences, hotel bedrooms, theatres, private offices, hospitals, churches.	2.5-4.5
Large offices, restaurants, hotels, dining-rooms, public buildings	3.5 – 5.5
Corridors, computer-rooms, cafeterias, washrooms, department stores.	4.5 –6
Factories, workshops, garages, warehouses.	5 - 10

The recommended delivery velocities for different applications (ASHRAE GUIDE)

APPLICATION	N C Level
Concert halls, studios opera halls	20 to 25
Offices, board rooms, private relaxation rooms.	20 to 30
Conference rooms, private rooms, theaters, houses, villas.	25 to 35
Lecture halls, reception rooms, planetarium, and study halls.	30 to 35
Libraries, hotels individual rooms, court rooms.	30 to 40
Post offices, restaurants, reception hall	35 to 45
Kitchens and toilets, halls and corridors, cafeterias, supermarkets	35 to 55
Accounting offices, computation rooms.	40 to 60
Foundries, factories, heavy machinery room.	55 to 75

The recommended NC level for different applications (ASHRAE GUIDE)

AVAILABLE SIZES & CFM RANGE

Size (inch)	CFM range	Size (inch)	CFM range		
12 x 6	100 - 300	12 x 8	150 - 400		
16 x 6	150 - 350	16 x 8	175 - 500		
18 x 6	200 - 400	18 x 8	200 - 550		
20 x 6	200 - 450	20 x 8	225 - 625		
24 x 6	225 - 525	24 x 8	250 - 750		
30 x 6	300 - 700	30 x 8	325 - 950		
36 x 6	350 - 900	36 x 8	400 - 1150		
Size (inch)	CFM range	Size (inch)	CFM range		
12 x 10	150 - 450	12 x 12	200 - 550		
16 x 10	200 - 600	16 x 12	250 - 750		
18 x 10	250 - 700	18 x 12	300 - 850		
20 x 10	275 - 800	20 x 12	325 - 925		
24 x 10	325 - 1000	24 x 12	400 - 1150		
30 x 10	400 - 1200	30×12	500 - 1400		
36 x 10	500 - 1400	36 x 12	600 - 1700		
Size (inch)	CFM range	Size (inch)	CFM range		
16 x 14	300 - 850	24 x 18	600 - 1650		
18 x 14	350 - 950	30 x 18	750 - 2100		
20 x 14	400 - 1050	36 x 18	900 - 2500		
24 x 14	450 - 1200	24 x 24	800 - 2300		
30 x 14	550 - 1600	30 x 24	1000 - 2800		
36 x 14	700 - 2000	36 x 24	1200 - 3200		
20 x 18	500 - 1400				

ALSHARQA AIR OUTLETS

BASIC PERFORMANCE DATA

SUPPLY AIR GRILLES & REGISTERS

Cina	Velo (fpm		200	300	400	500	600	700	800	
Size	Static	0°	0.0065	0.014	0.025	0.041	0.056	0.08	0.105	
(inch)	Pressure	22.5°	0.0085	0.018	0.033	0.053	0.077	0.104	0.136	
	("WG)	45°	0.0105	0.023	0.041	0.066	0.095	0.13	0.17	
16 x 12	CFM		278	417	556	694	833	972	1111	
20 x 10	NC		< 20	< 20	< 20	< 20	20	26	32	
24 x 8		00	19	24	32	39	45	49	54	
2	Throw	22.5°	14	20	27	32	37	43	45	
(Ak=1.0 ft) ²	(Ft.)	45°	12	17	23	26	30	34	37	
16 x 14	CFM		300	450	600	750	900	1050	1200	
18 x 12	NC		< 20	< 20	< 20	< 20	23	28	33	
36 x 6	TI	00	19	24	32	39	46	51	55	
2	Throw (Ft.)	22.5°	14	20	27	32	37	43	45	
(Ak=1.14 ft)	(Ft.)	45°	12	17	23	26	30	34	37	
18 x 14	CFM		333	500	667	833	1000	1167	1333	
20 x 12	NC		< 20	< 20	20	23	28	33	38	
24 x 10	TI	00	21	26	34	41	48	53	56	
30 x 8	Throw (Ft.)	22.5°	15	21	28	33	34	44	45	
(Ak=1.18 ft)	(Ft.)	45°	13	18	23	27	31	34	37	
20 44	CFM		400	600	800	1000	1200	1400	1600	
20 x 14 24 x 12	NC	_	< 20	< 20	23	28	33	38	43	
36 x 8	Theresa	0°	20	28	38	47	54	59	62	
(Ak=1.41 ft) ²	Throw (Ft.)	22.5°	14	23	32	38	42	50	51	
	(1 c.)	45°	12	19	27	33	38	42	44	
	CFM		417	625	833	1042	1250	1458	1667	
30 x 10	NC		< 20	< 20	23	28	33	38	43	
(Al. 1.41 ft) ²	Throw	0°	20	28	38	47	54	59	62	
(Ak=1.41 ft) ²	(Ft.)	22.5°	14	23	32	38	42	50	51	
	22 32	45°	12	19	27	33	38	42	44	
	CFM		467	700	933	1167	1400	1633	1867	
24 x 14	NC		< 20	< 20	23	28	34	39	44	
(AL 1656)	Throw	00	21	30	38	48	54	59	61	
(Ak=1.65 ft)	(Ft.)	22.5°	14	25	32	38	43	49	51	
		45°	12	21	26	33	38	41	43	
20 x 18	CFM		600	750	1000	1250	1500	1750	2000	
30 x 12	NC		< 20	< 20	23	28	34	39	44	
36 x 10	Throw	00	23	33	41	49	58	64	66	
(Ak=1.80 ft) ²	(Ft.)	22.5°	15	28	33	40	46	53	56	
V 1.32 11/		45°	13	23	27	33	39	44	46	

BASIC PERFORMANCE DATA

SUPPLY AIR GRILLES & REGISTERS

	Volo	city							
Size	Velo (fpm		200	300	400	500	600	700	800
(inch)	Static	0°	0.0065	0.014	0.025	0.041	0.056	0.08	0.105
(IIICII)	Pressure	22.5°	0.0085	0.018	0.033	0.053	0.077	0.104	0.136
	("WG)	45°	0.0105	0.023	0.041	0.066	0.095	0.13	0.17
16 x 12	CFM		278	417	556	694	833	972	1111
20 x 10	NC		< 20	< 20	< 20	< 20	20	26	32
24 x 8	Throw	0°	19	24	32	39	45	49	54
(AL-106) ²	(Ft.)	22.5°	14	20	27	32	37	43	45
(Ak=1.0 ft)	(1 4.)	45°	12	17	23	26	30	34	37
16 x 14	CFM		300	450	600	750	900	1050	1200
18 x 12	NC		< 20	< 20	< 20	< 20	23	28	33
36 x 6	Throw	0°	19	24	32	39	46	51	55
(Al. 1146)	(Ft.)	22.5°	14	20	27	32	37	43	45
(Ak=1.14 ft)	(1 (.)	45°	12	17	23	26	30	34	37
18 x 14	CFM		333	500	667	833	1000	1167	1333
20 x 12	NC		< 20	< 20	20	23	28	33	38
24 x 10	Throw (Ft.)	0°	21	26	34	41	48	53	56
30 x 8 2		22.5°	15	21	28	33	34	44	45
(Ak=1.18 ft)	(1-1.)	45°	13	18	23	27	31	34	37
20 14	CFM		400	600	800	1000	1200	1400	1600
20 x 14 24 x 12	NC		< 20	< 20	23	28	33	38	43
36 x 8	Throw	0°	20	28	38	47	54	59	62
36 x 8 (Ak=1.41 ft) ²	Throw (Ft.)	22.5°	14 23		32	38	42	50	51
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	(1 4.7)	45°	12	19	27	33	38	42	44
	CFM		417	625	833	1042	1250	1458	1667
30 x 10	NC	10-11-0	< 20	< 20	23	28	33	38	43
(Ak=1.41 ft) ²	Throw	0°	20	28	38	47	54	59	62
(AK=1.411t)	(Ft.)	22.5°	14	23	32	38	42	50	51
	CEN	45°	12	19	27	33	38	42	44
	CFM		467	700	933	1167	1400	1633	1867
24 x 14	NC	00	< 20	< 20	23	28	34	39	44
(Al. 1656) ²	Throw	00	21	30	38	48	54	59	61
(Ak=1.65 ft)	(Ft.)	22.5°	14	25	32	38	43	49	51
		45°	12	21	26	33	38	41	43
20 x 18	CFM		600	750	1000	1250	1500	1750	2000
30 x 12	NC		< 20	< 20	23	28	34	39	44
36 x 10	Throw	0°	23	33	41	49	58	64	66
(Ak=1.80 ft)	(Ft.)	22.5°	15	28	33	40	46	53	56
,		45°	13	23	27	33	39	44	46

ALSHARQA AIR OUTLETS

BASIC PERFORMANCE DATA

SUPPLY AIR GRILLES & REGISTERS

Ci	Velo (fpm		200	300	400	500	600	700	800	
Size	Static	00	0.0065	0.014	0.025	0.041	0.056	0.08	0.105	
(inch)	Pressure	22.5°	0.0085	0.018	0.033	0.053	0.077	0.104	0.136	
	("WG)	45°	0.0105	0.023	0.041	0.066	0.095	0.13	0.17	
	CFM	-0.040-1	600	900	1200	1500	1800	2100	2400	
24 x 18	NC		< 20	< 20	24	29	34	39	44	
30 x 14 36 x 12		00	26	36	44	51	59	65	68	
(Ak=2.18 ft)	Throw	22.5°	17	30	37	43	46	53	56	
((Ft.)	45°	15	25	31	34	39	44	46	
26 44	CFM		700	1050	1400	1750	2100	2450	2800	
36 x 14	NC		< 20	< 20	24	29	35	40	45	
,	TI	0°	30	40	49	56	64	69	71	
(Ak=2.5 ft)	Throw	22.5°	24	33	41	47	50	56	58	
(/ 2.5 //	(Ft.)	45°	21	28	35	38	43	47	48	
	CFM		750	1125	1500	1875	2250	2625	3000	
30 x 18	NC		< 20	< 20	24	29	35	40	45	
	Throw (Ft.)	0°	30	40	50	57	57 65		72	
(Ak=2.55 ft) ²		22.5°	24			47	50	56	58	
,,	(Ft.)	45°	21	28	35	38	43	47	48	
	CFM		800	1200	1600	2000	2000 2400		3200	
24 x 24	NC		< 20	< 20	24	29	29 35		45	
		0°	31	41	51	38	66	71	73	
$(Ak=2.6 \text{ ft})^2$	Throw (Ft.)	22.5°	25	34	42	48	51	57	59	
	(11.)	45°	21 28		35	39	44	48	49	
	CFM		900	1350	1800	2250	2700	3150	3600	
36 x 18	NC		< 20	< 20	24	29	29 35		45	
2	Th	0°	34	44	55	62	70	74	76	
(Ak=2.9 ft)	Throw (Ft.)	22.5°	29	38	46	52	55	59	61	
	(1 (.)	45°	24	32	38	42	47	50	51	
	CFM		1000	1500	2000	2500	3000	3500	4000	
30 x 24	NC		< 20	20	25	30	35	41	46	
(Al. 226) ²	Throw	0°	35	45	56	64	72	75	77	
(Ak=3.2 ft) ²	(Ft.)	22.5°	29	38	47	53	56	59	61	
	(1 4.7)	45°	24	32	38	42	47	50	51	
	CFM		1200	1800	2400	3000	3600	4200	4800	
36 x 24	NC		< 20	21	26	31	36	41	46	
(41, 200)	Throw	0°	40	50	60	70	78	85	90	
(Ak=3.9 ft) ²	Throw (Ft.)	22.5°	34	42	50	60	67	74	79	
	(1 (.)	45°	28	35	40	49	56	62	66	

G	RI		ES	O	RI	[G]	ST	ER	S								
	7(1)	ارت بر				.01	0 1	_1(_							
I	IOT	ES															
• • • • •	• • • • •	• • • •	• • • • •	• • • •	• • • •	• • • • •	• • • •	••••	• • • • •	••••	• • • • •	• •	• •	• • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
		• • • •						• • • •									
					200 <u>2</u> 200								_				
••••	• • • • •	••••		••••	• • • •		••••	••••		••••	• • • • •	••••		•••••			
••••	• • • • •	• • • •	••••	••••	••••	• • • • •	••••	••••	• • • • •	••••	• • • • •	• • • •		• • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
10 - 2000-100000-00	201 <u>2</u> - 235 - 100 - 10				egg <u>e</u> tepagas v				walland state		<u></u>	17 <u>10</u> - <u>2</u> 17,000,00					
														• • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • •		• • • •		• • • •	• • • •		• • • •	• • • •		• • • •	• • • • •	• • • •	•	• • • •	• • • • • • •	•••••	
													.,				
•••••	• • • • •	••••	• • • • •	••••	• • • •	• • • • •	••••	••••	• • • • •	••••	• • • • •	••••	•••	• • •			• • • • • • • • • • • • • • • • • • • •
• • • • •		••••			• • • •		• • • •	••••		••••	• • • • •	• • • •	••	• • •	• • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
															No. 2002-00 processors on.		
• • • • •	• • • • •	• • • •	• • • • •	• • • •	• • • •	• • • • •	• • • •	• • • •	• • • • •	••••	• • • • •	• • • •	•	• • • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • •								••••			•	• • • •			
••••		••••		••••				••••		••••			•••	• •	• • • • • •		
••••	• • • • •	• • • •		• • • •	• • • •		• • • •	••••		• • • •	• • • • •	• • • •	••••	•	• • • • •		
• • • • •	• • • • •	• • • •	• • • • •	• • • •	• • • •	• • • • •	••••	••••	• • • • •	••••	• • • • •	••••	• • • •	•	• • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • •						• • • •		• • • •			• • • •	•			
••••	• • • • •	• • • •	• • • • •	••••	••••		••••	• • • •	• • • • •	••••	• • • • •	• • • •	• • • •		•••	•••••	••••••
Q 2000000000000000000000000000000000000		10000000 TeX." 4-41			35 gg - 105 man ***	Managaran		ON MOSSIA	KVSSLITATO - ALLA VI-		100 D233070 +01000 *******************************		-0000000	0.00			
		••••		••••	• • • •		••••	••••		••••	• • • • •	••••	••••	•	•••		
• • • • •		• • • •		• • • •	• • • •		• • • •	• • • •		••••	• • • • •	• • • •	• • • •	•	• • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •
													• • • • •				
•••••	• • • • •	• • • •	• • • • •	• • • •	• • • •	• • • • •	• • • •	••••	• • • • •	••••	• • • • •	••••	• • • •	•	•••	•••••	••••••
		• • • •			• • • •			• • • •		••••	• • • • •		• • • •	•	• • • •		
															· · · · ·		
••••	• • • • •	• • • •		••••	• • • •	• • • • •	••••	••••		••••	• • • • •	• • • •	• • • •	•	•••••	•••••	

1.0110	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
•••••	
• • • • • • • • • • • • • • • • • • • •	
•••••	••••••••••••••••••••••••••••••
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	••••••••••••••••
• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••
• • • • • • • • • • • • • • • • • • • •	••••••
• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••
•••••	
Displaying to compression in terms.	

Administration:53 B2 omarat ElFarokya,ElNozha ElGedida,Cairo Factory:piece No 134 in 250 Fdan-Badr city -Egypt Tel. Fax :(202) 2623 2292 - 010000 30 528 Mobile:010064 17 304 - 010000 30 581

E-mail:info@alsharqa.com www.alsharqa.com

